III Geometric group theory - Example Sheet 3

Lent 2024
hjrw2@cam.ac.uk

1. Let L be a graph isometric to \mathbb{R}, and consider a group G acting faithfully and cocompactly on L. Draw the possible quotient graphs of groups $G \backslash L$. Classify the possible such groups G.
2. Consider the fundamental groups of Dehn's homology spheres

$$
G_{n}=\pi_{1}\left(M_{n}\right)=\left\langle x, y, z \mid x^{2} z^{-1}, y^{3} z^{-1},(x y)^{6 n+5} z^{-5 n-4}\right\rangle
$$

for $n \geq 0$. Suppose that G_{n} acts on a tree T.
(a) Assume that z acts elliptically on T, and let $T^{\prime}=\operatorname{Fix}(z)$. Prove that G_{n} preserves T^{\prime}, and deduce that G_{n} has a global fixed point.
(b) Assume that z acts hyperbolically on T, and let $L=\operatorname{Axis}(z)$. Prove that G_{n} preserves T^{\prime}, and deduce that G_{n} surjects a cocompact group of isometries of L.
(c) Conclude that G_{n} has Serre's Property FA.
3. Consider a matrix $A \in S L_{2}(\mathbb{R})$, and let $\phi_{A} \in P S L_{2}(\mathbb{R})=\operatorname{Isom}{ }^{+}\left(\mathbb{H}^{2}\right)$ be the corresponding Möbius transformation. Prove that ϕ_{A} is:
(a) hyperbolic if $|\operatorname{tr} A|>2$;
(b) elliptic if $|\operatorname{tr} A|<2$;
(c) parabolic or the identity if $|\operatorname{tr} A|=2$.
4. Let Γ be a Fuchsian group. Prove that the centraliser of any non-trivial element of Γ is cyclic.
5. Let $\phi \in \operatorname{Isom}^{+}\left(\mathbb{H}^{2}\right)$ be a hyperbolic isometry. Prove that, after possibly replacing ϕ by its inverse, the endpoints $\xi_{+}, \xi_{-} \in \partial \mathbb{H}^{2}$ of the axis of ϕ have the following property: for any open subset $U \ni \xi_{+}$ and closed subset $V \not \supset \xi_{-}$of $\partial \mathbb{H}^{2}$,

$$
\phi^{n}(V) \subseteq U
$$

for all sufficiently large n. [We say that ϕ acts with north-south dynamics on $\partial \mathbb{H}^{2}$.] Deduce that there is no metric on $\partial \mathbb{H}^{2}$ that is both compatible with the usual topology and invariant under the action of $\operatorname{Isom}^{+}\left(\mathbb{H}^{2}\right)$.
6. Let Γ be a Fuchsian group containing at least one hyperbolic element. The limit set of Γ, denoted by $\Lambda \Gamma$, is defined to be the closure in $\partial \mathbb{H}^{2}$ of the set of endpoints of axes of hyperbolic elements of Γ.
(a) Prove that the natural action of Γ on $\partial \mathbb{H}^{2}$ preserves $\Lambda \Gamma$.
(b) Show that either there is a point $\eta \in \partial \mathbb{H}^{2}$ fixed by every element of Γ, or every orbit of the action of Γ on $\Lambda \Gamma$ is dense in $\Lambda \Gamma$.
7. Let $p \leq q \leq r$ be positive integers, and consider the triangle group $\Gamma(p, q, r)$. If $1 / p+1 / q+1 / r=1$, prove that $\Gamma(p, q, r)$ acts compactly and properly discontinuously by isometries on the Euclidean plane. List all possibilities for p, q, r and draw pictures of the corresponding tilings.
8. (a) Let G be a group generated by elements a and b, acting on a set X. Suppose that there are disjoint subsets $A_{+}, A_{-}, B_{+}, B_{-} \subseteq X$ so that

$$
\begin{gathered}
a\left(A_{+} \cup B_{+} \cup B_{-}\right) \subseteq A_{+} \quad, \quad b\left(B_{+} \cup A_{+} \cup A_{-}\right) \subseteq B_{+} \\
a^{-1}\left(A_{-} \cup B_{+} \cup B_{-}\right) \subseteq A_{-} \quad, \quad b^{-1}\left(B_{-} \cup A_{+} \cup A_{-}\right) \subseteq B_{-}
\end{gathered}
$$

Show that every non-trivial reduced word in a and b moves a point in X. Deduce that G is freely generated by a and b. [This result is called Klein's ping-pong lemma.]
(b) Consider the Möbius transformations

$$
\alpha(z)=z+2, \beta(z)=\frac{z}{1-2 z} .
$$

Prove that the subgroup of $P S L_{2}(\mathbb{R})$ generated by α and β is free.
9. Consider the geodesic triangle Δ in the upper half-plane model of \mathbb{H}^{2} with vertices at the points, $0,1, \infty$. Compute the hyperbolic diameter of the largest semicircle inscribed in Δ. [Triangles in \mathbb{H}^{2} with vertices on the boundary are called ideal.] Deduce the smallest possible δ such that \mathbb{H}^{2} is δ-hyperbolic.

