Lent 2024

hjrw2@cam.ac.uk

- 1. Let L be a graph isometric to \mathbb{R} , and consider a group G acting faithfully and cocompactly on L. Draw the possible quotient graphs of groups $G \setminus L$. Classify the possible such groups G.
- 2. Consider the fundamental groups of Dehn's homology spheres

$$G_n = \pi_1(M_n) = \langle x, y, z \mid x^2 z^{-1}, y^3 z^{-1}, (xy)^{6n+5} z^{-5n-4} \rangle$$

for $n \ge 0$. Suppose that G_n acts on a tree T.

- (a) Assume that z acts elliptically on T, and let T' = Fix(z). Prove that G_n preserves T', and deduce that G_n has a global fixed point.
- (b) Assume that z acts hyperbolically on T, and let L = Axis(z). Prove that G_n preserves T', and deduce that G_n surjects a cocompact group of isometries of L.
- (c) Conclude that G_n has Serre's Property FA.
- 3. Consider a matrix $A \in SL_2(\mathbb{R})$, and let $\phi_A \in PSL_2(\mathbb{R}) = \text{Isom}^+(\mathbb{H}^2)$ be the corresponding Möbius transformation. Prove that ϕ_A is:
 - (a) hyperbolic if $|\operatorname{tr} A| > 2;$
 - (b) elliptic if $|\operatorname{tr} A| < 2;$
 - (c) parabolic or the identity if $|\operatorname{tr} A| = 2$.
- 4. Let Γ be a Fuchsian group. Prove that the centraliser of any non-trivial element of Γ is cyclic.
- 5. Let $\phi \in \text{Isom}^+(\mathbb{H}^2)$ be a hyperbolic isometry. Prove that, after possibly replacing ϕ by its inverse, the endpoints $\xi_+, \xi_- \in \partial \mathbb{H}^2$ of the axis of ϕ have the following property: for any open subset $U \ni \xi_+$ and closed subset $V \not\ni \xi_-$ of $\partial \mathbb{H}^2$,

 $\phi^n(V) \subseteq U$

for all sufficiently large n. [We say that ϕ acts with north-south dynamics on $\partial \mathbb{H}^2$.] Deduce that there is no metric on $\partial \mathbb{H}^2$ that is both compatible with the usual topology and invariant under the action of Isom⁺(\mathbb{H}^2).

- 6. Let Γ be a Fuchsian group containing at least one hyperbolic element. The *limit set* of Γ , denoted by $\Lambda\Gamma$, is defined to be the closure in $\partial \mathbb{H}^2$ of the set of endpoints of axes of hyperbolic elements of Γ .
 - (a) Prove that the natural action of Γ on $\partial \mathbb{H}^2$ preserves $\Lambda \Gamma$.
 - (b) Show that either there is a point $\eta \in \partial \mathbb{H}^2$ fixed by every element of Γ , or every orbit of the action of Γ on $\Lambda \Gamma$ is dense in $\Lambda \Gamma$.
- 7. Let $p \leq q \leq r$ be positive integers, and consider the triangle group $\Gamma(p, q, r)$. If 1/p + 1/q + 1/r = 1, prove that $\Gamma(p, q, r)$ acts compactly and properly discontinuously by isometries on the Euclidean plane. List all possibilities for p, q, r and draw pictures of the corresponding tilings.
- 8. (a) Let G be a group generated by elements a and b, acting on a set X. Suppose that there are disjoint subsets $A_+, A_-, B_+, B_- \subseteq X$ so that

$$a(A_+ \cup B_+ \cup B_-) \subseteq A_+ \quad , \quad b(B_+ \cup A_+ \cup A_-) \subseteq B_+$$
$$a^{-1}(A_- \cup B_+ \cup B_-) \subseteq A_- \quad , \quad b^{-1}(B_- \cup A_+ \cup A_-) \subseteq B_- \, .$$

Show that every non-trivial reduced word in a and b moves a point in X. Deduce that G is freely generated by a and b. [This result is called *Klein's ping-pong lemma*.]

(b) Consider the Möbius transformations

$$\alpha(z) = z + 2, \ \beta(z) = \frac{z}{1 - 2z}.$$

Prove that the subgroup of $PSL_2(\mathbb{R})$ generated by α and β is free.

9. Consider the geodesic triangle Δ in the upper half-plane model of \mathbb{H}^2 with vertices at the points, $0, 1, \infty$. Compute the hyperbolic diameter of the largest semicircle inscribed in Δ . [Triangles in \mathbb{H}^2 with vertices on the boundary are called *ideal*.] Deduce the smallest possible δ such that \mathbb{H}^2 is δ -hyperbolic.